RESEARCH ARTICLES Discrimination Between Native and Intentionally Misfolded Conformations of Proteins: ES/IS, a New Method for Calculating Conformational Free Energy That Uses Both Dynamics Simulations With an Explicit Solvent and an Implicit Solvent Continuum Model

نویسندگان

  • Yury N. Vorobjev
  • Juan Carlos Almagro
  • Jan Hermans
چکیده

A new method for calculating the total conformational free energy of proteins in water solvent is presented. The method consists of a relatively brief simulation by molecular dynamics with explicit solvent (ES) molecules to produce a set of microstates of the macroscopic conformation. Conformational energy and entropy are obtained from the simulation, the latter in the quasi-harmonic approximation by analysis of the covariance matrix. The implicit solvent (IS) dielectric continuum model is used to calculate the average solvation free energy as the sum of the free energies of creating the solute-size hydrophobic cavity, of the van der Waals solute-solvent interactions, and of the polarization of water solvent by the solute’s charges. The reliability of the solvation free energy depends on a number of factors: the details of arrangement of the protein’s charges, especially those near the surface; the definition of the molecular surface; and the method chosen for solving the Poisson equation. Molecular dynamics simulation in explicit solvent relaxes the protein’s conformation and allows polar surface groups to assume conformations compatible with interaction with solvent, while averaging of internal energy and solvation free energy tend to enhance the precision. Two recently developed methods—SIMS, for calculation of a smooth invariant molecular surface, and FAMBE, for solution of the Poisson equation via a fast adaptive multigrid boundary element—have been employed. The SIMS and FAMBE programs scale linearly with the number of atoms. SIMS is superior to Connolly’s MS (molecular surface) program: it is faster, more accurate, and more stable, and it smooths singularities of the molecular surface. Solvation free energies calculated with these two programs do not depend on molecular position or orientation and are stable along a molecular dynamics trajectory. We have applied this method to calculate the conformational free energy of native and intentionally misfolded globular conformations of proteins (the EMBL set of deliberately misfolded proteins) and have obtained good discrimination in favor of the native conformations in all instances. Proteins 32:399–413, 1998. r 1998 Wiley-Liss, Inc.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling loop reorganization free energies of acetylcholinesterase: a comparison of explicit and implicit solvent models.

The treatment of hydration effects in protein dynamics simulations varies in model complexity and spans the range from the computationally intensive microscopic evaluation to simple dielectric screening of charge-charge interactions. This paper compares different solvent models applied to the problem of estimating the free-energy difference between two loop conformations in acetylcholinesterase...

متن کامل

Free energy landscape of protein folding in water: explicit vs. implicit solvent.

The Generalized Born (GB) continuum solvent model is arguably the most widely used implicit solvent model in protein folding and protein structure prediction simulations; however, it still remains an open question on how well the model behaves in these large-scale simulations. The current study uses the beta-hairpin from C-terminus of protein G as an example to explore the folding free energy l...

متن کامل

SHORT COMMUNICATION Modeling Loop Reorganization Free Energies of Acetylcholinesterase: A Comparison of Explicit and Implicit Solvent Models

The treatment of hydration effects in protein dynamics simulations varies in model complexity and spans the range from the computationally intensive microscopic evaluation to simple dielectric screening of charge-charge interactions. This paper compares different solvent models applied to the problem of estimating the free-energy differencebetween two loop conformations in acetylcholinesterase....

متن کامل

On the nonpolar hydration free energy of proteins: surface area and continuum solvent models for the solute-solvent interaction energy.

Implicit solvent hydration free energy models are an important component of most modern computational methods aimed at protein structure prediction, binding affinity prediction, and modeling of conformational equilibria. The nonpolar component of the hydration free energy, consisting of a repulsive cavity term and an attractive van der Waals solute-solvent interaction term, is often modeled usi...

متن کامل

Computing free energies of protein conformations from explicit solvent simulations.

We report a fully general technique addressing a long standing challenge of calculating conformational free energy differences between various states of a polymer chain from simulations using explicit solvent force fields. The main feature of our method is a special mapping variable, a path coordinate, which continuously connects two conformations. The path variable has been designed to preserv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998